
 
Spectrum Software, Inc. 
11445 Johns Creek Pkwy. 
Suite 300 
Duluth, GA – 30097 
www.spectrumscm.com 

 
Subject: Advanced Branching Techniques for SpectrumSCM 
 
Issue Date: May 14th, 2002   From: William C. Brown 
    corey@spectrumsoftware.net 
    (770)448-8662 
 
1.0 Introduction:  Over the years, developers and system engineers have 

developed many unique branching techniques to solve difficult configuration 
management problems. The purpose of this paper is to describe several of 
the most common branching techniques and to illustrate how these 
techniques can be implemented using the SpectrumSCM system. 
SpectrumSCM approaches branching in a significantly different and powerful 
manner than most CM systems. The SpectrumSCM system uses the concept 
of Product Level Branching much like several other CM systems including 
Perforce, ClearCase, AccuRev and others. Product level branching ensures 
that branches are well known (documented), controllable and use repository 
space as efficiently as possible.  

 
Branching techniques can be considered release management design 
patterns for use in CM (Configuration Management) systems. Like design 
patterns used in programming techniques, the application of proper design 
patterns to configuration management will result in the development and 
evolution of systems that are more maintainable, understandable, extensible 
and scalable. CM systems should not become a burden by adding to the work 
load of the development team. A properly used CM system should free the 
developer from the intricate details of branching and release management. 
The proper application of branching design patterns can result in systems that 
are as easy to use, after years of activity, as the day the first code snippets 
were versioned into the system. 
 

2.0 SpectrumSCM: SpectrumSCM is a full featured CM system that emphasizes 
process management, issue tracking, release management and version 
control all in one tool. The system does not impose any one branching design 
pattern on the users of the system. Users of SpectrumSCM are free to use 
many different branching design patterns, including all of the patterns outlined 
in this paper. Most developers are familiar with the most common branching 
technique, which involves branching single files during code development. 
For a short period of time, the code is extended in a branch to resolve a 
particular problem or to introduce a new feature outside the mainline 
development effort. The branched code is eventually merged back into the 
mainline after the fix has been verified or the new feature set has been 



 Advanced Branching Techniques for SpectrumSCM  

implemented. While this is a common technique, and one that is supported by 
SpectrumSCM, it’s not the best solution for every situation. The following 
design patterns are supported by SpectrumSCM and, in some instances, are 
unique to SpectrumSCM. 

 
3.0 The Classic branching design pattern: The classic pattern is the basic 

branching pattern outlined above. This pattern is the most recognized and 
most often used pattern for branching code.  In some cases it is the only 
pattern supported by many version control and high end CM systems. The 
classic pattern allows individual developers to create alternate branches of 
code extended from the mainline development stream. The existence of such 
a branch is not immediately obvious to the other users of the system; this can 
lead to confusion, especially if the owner of one of these anonymous 
branches leaves the company unexpectedly. This type of branching is done at 
the file level and the branched files are only conceptually linked to a specific 
branch by a branch number. This is readily evident in systems that are based 
on RCS (Revision Control System) where the third digit in the file version 
number is greater than “0”, e.g 1.3.1.2 which usually means that a branch for 
this particular file was formed at version 1.3 and is now at version 1.2 of the 
new branch. Any branching relationship between this file and any other file in 
the system is known only by the developer who created the branch and is not 
managed by the CM system. In the SpectrumSCM system, branches are first 
class objects in the system and their existence is readily apparent to the 
users of the system. To perform classic branching in the SpectrumSCM 
system, a generic is created to contain the branched files. Notes and other 
artifacts can be associated with the branch to assure that the purpose of the 
branch is known and available to every user of the system. When a generic is 
created from another generic or release, all files shared between the original 
code stream and the new generic are common to the two streams. This 
means that only one first class object for each file physically exists in the 
system and both branches point to that object. Actual branching is 
accomplished by uncommoning a file from the mainline into the branch. 
When a file is uncommoned, there are two first class system objects, one for 
each version of the file. The following diagram illustrates the point: 

 

 

Branch 
generic 

V2.0 

V1.0 V1.0 V1.0 V1.0 V1.0 V1.0 

V1.0 

Mainline 
generic 

Feb 11, 2002 Spectrum Software Proprietary Page 2 of 10 



 Advanced Branching Techniques for SpectrumSCM  

 
 In this example, the green circles represent a single uncommoned file. Each 

branch contains a separate physical instance of this file and shared instances 
of all the other files. When the files are recommoned, a single file instance 
will again be shared by both branches. 

 
 The objective of the classic branching pattern is to diverge one or more files 

from the mainline, usually for a short period of time, so that custom work or 
bug fixes can be applied outside the mainstream development effort. At a 
later date, the changes are merged or recommoned back into the mainline 
development stream. In the SpectrumSCM system there is a significant 
difference between merging and recommoning. Recommoning makes one 
single source instance out of two independent entities. Merging combines the 
contents of the two files, but the two files remain physically separate. 

 
Solution Summary: The Classic branching pattern is used to diverge small 

numbers of files from the mainline code stream, for a short period of time, in 
order to fix a known problem or to implement a new feature. The diverged 
files are merged back into the mainline code stream when the work has been 
completed. 

 
Benefits: The classic branching pattern allows individual developers to separate 

files into a protected environment away from mainline development. When 
SpectrumSCM is used with the classis branching pattern the branches are 
clearly visible and well documented.  

 
Consequences: In systems that do not treat branches as first class objects, the 

existence of a branch for a particular code stream may remain unknown to 
other developers. 

 
4.0 Parallel Development pattern: The parallel development pattern is very 

similar to the classic pattern in that two or more branches are created, but in 
the parallel pattern, some files are never merged or recommoned back with 
the mainline. The parallel development pattern might be used during the 
development of a product for use on multiple operating systems. The vast 
majority of the functionality and source files are the same on all operating 
system, but some files must be unique to support the differences between the 
operating systems. For example, the direct video calls for any GUI 
components will most certainly be different and will thus require different 
code.  The implementation of the second or third generic (branch) is exactly 
the same as in the classic pattern except that some files will never be 
recommoned. Each generic will become a platform-specific release of the 
product. The following diagram illustrates parallel development for an editor 
that will run on three different operating systems: 

 

Feb 11, 2002 Spectrum Software Proprietary Page 3 of 10 



 Advanced Branching Techniques for SpectrumSCM  

 

MAC Gui.c Gui.h 

Generic 

Unix 
Gui.c Gui.hgeneric 

Foo.c Bar.c Foo.h Bar.h

Windows 
generic Gui.c Gui.h

 
 In this case, the files Gui.c and Gui.h are different for each operating system 

and must remain diverged. The MAC, Unix and Windows generics all share 
the vast majority of files and only the files necessarily different  to implement 
the GUI on each OS are diverged.  

 
 This is where one of the strengths of the SpectrumSCM system becomes 

very apparent. There are three separate streams of work, one for each of the 
three supported operating systems. But the vast majority of the files that 
make up the product are common.  As a result, when problems are fixed in 
these common files, all three generics get the fix at the same time. The CR 
(Change Request) that is used to resolve the issue is available to be included 
in a release on all three generics. This feature, which is unique to 
SpectrumSCM, relieves the developer from fixing the same bug three times in 
three separate branches of the code. 

 
Solution Summary: The parallel development pattern allows two or more 

separate code streams to be developed in parallel. 
 
Benefits: In the SpectrumSCM system, code changes to common files are 

immediately visible across all parallel development efforts. Separate releases 
can be built to produce a product specific to a particular need (for example, 
different operating systems). The parallel pattern may also be used to 
develop multiple parallel releases of the same system, diverging only those 
files that will be impacted by each new feature. 

 
Consequences: Parallel development requires the development lead or project 

manager to decide which files are to be branched. Failure to diverge the 
necessary files will result in case-specific code changes being visible 
(common) in all of the parallel branches. 

Feb 11, 2002 Spectrum Software Proprietary Page 4 of 10 



 Advanced Branching Techniques for SpectrumSCM  

 
5.0 The Sandbox pattern: In this pattern, all work is performed in separate 

generics before being integrated back into the mainline. The most attractive 
feature of this pattern is that the mainline branch and the development branch 
are always in a known good state. New features are first developed in 
separate sandboxes and then integrated into the mainline only after the new 
features have been thoroughly tested and approved by the testing 
organization.  When the features are recommoned into the mainline, the 
developers can extract the code from the mainline and build a system with a 
known set of working and tested features. This pattern assures that the 
mainline is never in a quasi-buildable state, which happens quite often in 
traditional development. The development branch, because there is one 
branch per developer, always matches what the developer has in her private 
work area on her machine. The developer is free to work independently on a 
separate branch without impacting other developers. Consider the following 
diagram: 

 

 

Bill’s 
Sandbox 

Gary’s 
Sandbox 

Mainline 

Shared Common File Physical file Physical Uncommoned file 

 
 In this diagram the transparent circles are the shared common files which are 

common to the mainline. The blue circles are the actual physical instances of 
the files that the shared common files point to. The green circles are 
unshared physical files that have been uncommoned into Bill’s and Gary’s 
sandboxes. When these developers are finished with their parallel 
development work, the files will be recommoned with the mainline. After 
recommoning, the circles will become transparent like the others. 

 
 The sandbox pattern enables long-term parallel development. Most CM 

systems offer some form of parallel development in the form of concurrent 
editing. The problem with traditional concurrent editing is that it is file-based; 

Feb 11, 2002 Spectrum Software Proprietary Page 5 of 10 



 Advanced Branching Techniques for SpectrumSCM  

as soon as a programmer checks in a concurrently edited file, it must be 
merged back to the mainline code stream. Sandboxes allow long-term parallel 
development by allowing the programmer to freely check in and out any 
amount of code, for any amount of time, without disrupting work that may be 
in progress on the mainline. Only after the entire new feature has been tested 
and verified will the new code for the feature be merged back to the mainline 
branch. 

 
 The only caveat to this pattern is that it is an “all or nothing” pattern. All 

developers on the project team must use this pattern or they cannot use it at 
all. If files are uncommoned into the mainline and also into individual 
sandboxes, it becomes difficult to recommon the files back into all of the 
parallel generics. Consistent use of the sandbox pattern guarantees that the 
recommoning effort will be trivial, involving only a single merge of each file. 
The sandbox pattern closely resembles the parallel development pattern, 
except that all files will be recommoned into a single generic when 
development work is complete. 

 
 SpectrumSCM may be the only CM system that properly supports this 

pattern.  
 
Solution Summary: The Sandbox pattern provides each developer with a 

separate environment in which to work on new features or bug fixes. This 
pattern provides for long term parallel development that is completely isolated 
from the mainline. 

 
Benefits: The ability to manage long-term parallel development activities and 

isolate them from other development efforts and fixes. 
 
Consequences: All developers must use this pattern for the application of the 

pattern to be successful.  The SpectrumSCM system may be the only system 
that properly supports this pattern. 

 
 
6.0 The Promotion (Repository) Pattern: This pattern is similar to the sandbox 

pattern, but it operates in reverse. Using the promotion pattern, all work is 
done in the mainline and only after a feature has been thoroughly tested and 
approved is the feature promoted to another branch. The promotion branch or 
repository branch is where all feature sets are included to create system 
releases. The mainline becomes the development sandbox for all developers 
on the team. The objective of the promotion pattern is to produce a code 
repository for all known good work. System releases are generated only from 
the repository branch. At any time a good system can be extracted and built 
from the contents of the repository branch. 

 

Feb 11, 2002 Spectrum Software Proprietary Page 6 of 10 



 Advanced Branching Techniques for SpectrumSCM  

 This pattern depends on classic concurrent editing and at any time the 
mainline may be in a severe state of flux. Fortunately, developers don’t often 
check unfinished code back into the mainline until it is done; thus the mainline 
should remain relatively clean, but that is a process issue. The following 
diagram illustrates the point: 

 

 

Repository 
Branch 

Mainline 

 
 SpectrumSCM easily supports this pattern. After the repository branch is 

created, all files are checked out uncommon from the mainline. 
SpectrumSCM allows the project leaders to enforce this behavior by locking 
the repository generic. Locking guarantees that all files checked out or into 
the mainline will be uncommoned from the repository branch. Later, when the 
new features have been developed and tested, the new code is merged into 
the repository branch using the SpectrumSCM Merge Editor or by simply 
adding the new files to the repository generic. When features are rolled into 
the repository generic, the work is done by creating a new CR (Change 
Request) and that CR is used for adding or merging the files into the 
repository generic. Each CR in the repository generic represents a complete 
system feature or problem resolution. These CRs are easily included in new 
releases created from the repository branch. It is extremely easy to determine 
which feature sets and which bug fixes have been included in a release from 
the list of CRs associated with that release. 

 
Solution Summary: All work done by the development team occurs in the 

mainline branch. Only after features and bug fixes have been thoroughly 
tested and approved are they merged into the repository branch for creation 
of releases. 

 
Benefits: The repository pattern guarantees that all code on the repository branch 

is in a known good state. The features and bug fixes included in the 
repository branch are well documented by the CRs used to create the 
releases.  A release can be created at any point with the features that have 
been completed.  

 
Consequences: Like all forms of branching, the repository pattern requires a fair 

amount of file merging to be performed as the new features or bug fixes are 

Feb 11, 2002 Spectrum Software Proprietary Page 7 of 10 



 Advanced Branching Techniques for SpectrumSCM  

promoted to the repository. SpectrumSCM includes a very powerful merge 
editor that makes the merging operation fairly painless. 

 
 
7.0 The Patch Pattern: The patch pattern is used to repair and re-release 

previously shipped releases. Typically this pattern is exercised when a 
customer calls to report a bug, in a particular release of the system. By using 
the patch pattern, the particular release that the customer is having problems 
with can be extracted and placed into a new working branch. The branch 
must be immediately locked so that common files are uncommoned during 
edit operations. The new branch allows developers to work on the exact file 
versions that were used to initially create the release. This allows the 
developers to faithfully reproduce the system as it was released to the 
customer and to debug and fix the problem. The problem files are extended 
directly from the released version numbers to add the fix. Once the fix(es) 
have been added to the patch branch, a new release can be generated, 
tested and released back to the customer and made available to other 
customers using that release. Consider the following diagram: 

 

 
 

Patch Branch 

Mainline V3.0 

Mainline V2.0 
Release 2 

Mainline V1.0 
Release 1 

 In this example, release 1.0 has been extracted into a new generic called the 
patch branch. The generic is locked and all of the files that are edited to 
resolve the problem are either already uncommoned or will become 
uncommoned as part of the edit operation. 

 
 The creation of the patch branch pattern allows developers to use the merge 

and recommon editors to apply bug fixes from subsequent releases into the 
newly created patch release. SpectrumSCM easily supports this pattern and, 
again, may be one a few CM systems that supports this pattern correctly. Any 
system can be used to dump out a previous release (one hopes) but very few 

Feb 11, 2002 Spectrum Software Proprietary Page 8 of 10 



 Advanced Branching Techniques for SpectrumSCM  

systems actually allow the creation of a branch from a previously released 
system. 

 
Solution Summary: Sometimes previously released systems must be patched 

due to unexpected problems. End users of the previously released system 
may be reluctant to upgrade to the latest release due to testing issues and 
possible downtime. SpectrumSCM allows for any release to be recreated, and 
patch branches off that release to be easily created. This is done by creating 
a new generic that is rooted in a previous release of the system. Files in the 
new branch are visible exactly as they were when the release was created. 
The calendar is essentially turned back to that time frame and the revision 
numbers for files in the patch generic are based on the revision numbers of 
the released product. 

 
Benefits: The patch pattern allows for a previously released version of a system 

to be easily extended and re-released without impact on other releases or 
current work. This pattern is not often needed, but when it is, the ability to 
actually create a branch from a previous release results in a collective sigh of 
relief from the product developers and development managers. 

 
Consequences: The only consequence is that the branch will be extended and is 

only needed for a very short period of time. SpectrumSCM allows these short-
term generics to be soft deleted, which removes the generic from the list of 
active generics, but they can be restored with a few mouse clicks. 

 
Conclusion: Several different branching techniques have been outlined above. 

The application of these patterns can result in systems that are easy to 
maintain, manage and extend. The application of the wrong pattern at the 
wrong time, or simply not applying any patterns to everyday development 
work, can lead to the development and evolution of systems that are 
confusing at best and extremely hard to manage at worst. Some shops avoid 
concurrent editing or any form of branching simply because their CM tools do 
not make branching and merging an easy process. Branching, merging and 
concurrent editing should not be difficult subjects that are only spoken about 
in soft whispers around the water cooler. If an organization’s CM tools do not 
easily support these features, then it’s probably time to think about some new 
tools. SpectrumSCM supports all of these patterns easily. Branching, 
merging, concurrent editing, and recommoning are all features of the 
Spectrum tool that are very easy to use and make difficult CM situations 
easier to manage. 

 
 
 
 
 
 

Feb 11, 2002 Spectrum Software Proprietary Page 9 of 10 



 Advanced Branching Techniques for SpectrumSCM  

Feb 11, 2002 Spectrum Software Proprietary Page 10 of 10 

Acknowledgements: The use of patterns to describe solutions to particular 
programming/CM problems is not a new concept. Other authors have done a 
tremendous amount of work with patterns in both the software space and the 
configuration management space. This paper builds off of that work and as 
such the author would like to acknowledge the work of many of the giants in 
this space. The following list of authors and their works is by no means a 
complete list of available papers on the subject of patterns and other CM 
related topics. This list simply represents the works that have been most 
influential to the author in the development of this paper. 

 
• Streamed Lines - Branching Patterns for Parallel Software Development. 

Authors: Brad Appleton, Stephen P. Berczuk, Ralph Cabrera, Robert Orenstein. 
• Advanced SCM Branching Strategies: Author: Stephen Vance 
• The Spectrum of Functionality in CM Systems: Author: Susan Dart 
• AntiPatterns and Patterns in Software Configuration Management: Authors: William 

J. Brown, Hays W. “Skip” McCormick and Scott W. Thomas. 
• Design Patterns – Elements of Reusable Object-Oriented Software: Authors: Erich 

Gamma, Richard Helm, Ralph Johnson and John Vlissides. 
• Software Engineering: Author: Roger S. Pressman 
• Pattern Languages of Program Design 2: Authors: Vlissides, Coplien, Kerth. 
• Pattern Languages of Program Design3: Authors: Martin, Riehle, Buschmann. 
• CORBA Design Patterns: Authors: Thomas Mowbray, Raphael Malveau 

 
 
 
 
 
For additional information on SpectrumSCM please visit our website at www.spectrumscm.com. 

Or contact Spectrum Software at 770.448.8662 
 
  

http://www.spectrumscm.com/

